CHAPTER 6
AFFINE BINARY GATES AND AFFINE CIRCUIT STRUCTURES
Marek Perkowski, Edison Tsai and Sazzad Hossain

6.1. Introduction to the Concept of Affine Gates
In this chapter we will introduce a new useful concept – the affine gates. There are three basic types of such gates: 
1. Affine Root of Not gates (ARNG), 
2. Affine Toffoli gates, 

3. Affine Complex gates. 
We can create big quantum gates more efficiently from these new primitives. These gates are next used in generalized cascades that include both Toffoli gates and new inexpensive interval quantum gates that are built from ARNGs.

Currently quantum cascades are built from CNOT gates (Feynman, 1-Controlled NOT) and n * n Toffoli gates (k-controlled NOTs, here k 
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  n - 1). These realizations include very expensive gates when k is large [Maslov03]. Therefore we propose in this chapter some families of k-input gates that have inexpensive realizations in terms of the number of (truly quantum realizable) 2 * 2 gates. Each family has different interesting properties and should be used in conjunction with other families. For instance some of these families allow realizing every reversible single-output function of “even type” (with even number of true minterms) and should be used together with standard k-controlled Toffoli gates to realize the so-called “odd type” functions (binary odd functions have odd number of true minterms).

It is well known that AND gate in classical standard logic is irreversible. Given the output, one can not obtain the definite input states. The input variables a and b can be 00, 01 or 10 and produce an output B of 0. Therefore a reproduction of the inputs is not feasible. The Feynman gate in Figure 6.1.1 preserves all information from the input to the output. Checking the truth table of this 2×2 gate, it can be observed that the input values can be constructed uniquely from the output values. This gate is inexpensive in all known to me quantum technologies and should therefore be a base of synthesis, which means, it should be used as often as possible by every reversible logic synthesis algorithm.

[image: image2]
Figure 6.1.1: Feynman Gate; example for reversibility. This gate is a fundament of affine gates.

Besides the popular NMR quantum computers, Ion trap computers have become increasingly an attractive alternative [Nielsen00, DiVincenzo00]. Nature magazine [Britton06] recently published an article where scientists (C. Monroe et al.) fabricated a micrometer-scale ion trap on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. They confined a single 
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 ion in an integrated radiofrequency trap etched from a doped gallium-arsenide hetero structure. If this steady progress marches on, then even skeptics will be convinced about this new way of executing quantum computation. A limitation on the number of qudits is not known yet, but is currently predicted to be much higher than in NMR [Nielsen00, DiVincenzo00]. Both NMR and ion trap allow realizing the so-called “Controlled Quantum Gates”. The gate functionality is similar to that of a multiplexer. Additionally, it is not the input that the multiplexer selects (as there is only one input besides the select), but the function applied to this input. Concluding, all gates introduced below can be practically and inexpensively built in at least two quantum technologies, NMR and ion trap and in both these technologies CNOTs and CV/CV† gates were realized. Now we will present families of affine gates.
6. 2. Affine Root-of-NOT Gates (ARNG) 
6. 2.1. Design of 3 * 3 gates and circuits using controlled gates.

Let us first look at the well-known Toffoli gate circuit from Fig. 6.2.1. It includes only 2 * 2 quantum realizable gate primitives. This decomposition is therefore close to real quantum hardware and allows good quantum cost approximations. Calculating the number of 2 * 2 quantum gates as a pulse cost approximation is a good heuristic. Many circuits of this type were generated by Hung et al [Hung06], they use only 1-qubit gates – inverters and 2-qubit gates-controlled-V, Controlled-V† and Controlled-NOT. Observing these circuits one can appreciate that all controls of V, V† are linear or affine functions’ of variables or outputs of other macros. Analyzing these types of circuits and appreciating small relative cost of NOT and Feynman gates, we assume in this section that all controls are affine functions, which means, linear functions and their negations. 
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We do not care at this time how the upper part of the circuit, the control, is realized – we have developed elsewhere efficient methods for synthesis of such affine functions. The controlled (target) single qubit functions are inverters, V and V+ gates in one variant and only V, V+ in another variant. This way the 3-qubit Peres gate can be also created, as well as many other known gates. Peres is perhaps the least expensive universal binary permutative quantum gate (no proof exists yet, but nobody found a counterexample). This gate can be used instead of Toffoli in all our methods below. As we see, the principle of our approach is simple. Knowing a powerful pattern of creating Peres and Toffoli gates, we use this pattern to systematically (or stochastically) generate new families of “interesting gates” under certain constraints of binary (permutative) realizability discussed below. Next these gates are used as macros in quantum circuits minimization. In the presented here minimization program we use all affine functions as control functions  and we use V, V† (and NOT in some variants)  in the data path (target) qubits. In case of 3 * 3 circuits it is relatively easy to use this approach to generate affine controls in variables a, b and c to generate the full Toffoli-like, Peres-like of “Fredkin-like” gates, in particular the gate from Figure 6.2.1. The question of course arises, “what is an interesting gate?” We will try to answer this question below, but let us observe first that interesting is a gate that reduces quantum costs when applied in synthesis of general or special types of Boolean functions. Gate patterns from Figure 6.2.1 and Figure 6.2.2 are “interesting”. They create families of many useful affine gates by inserting all possible combinations of V, V+ to target boxes. Let us now analyze the problem of synthesizing the 4 * 4 Toffoli-like (Toffoli family) gates and circuits.

6.2.2. Design of 4 * 4 gates and circuits using controlled root gates

CircuitSearch was created to aid development of “interesting” gates. Playing with our CircuitSearch program we create, for instance, the circuit from Figure 6.2.2 and find that it realizes the function 
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 which is sum of minterms of Hamming distance 3 in three variables a, b, c  exored with variable d. This is an interesting function with respect to the criteria mentioned above. We call it a dual-cube function. Using CircuitSearch in a smart way and critically analyzing the generated by it circuits and their truth tables we find more interesting functions that become the base of new circuit structures and our new synthesis algorithms for these structures. An interesting observation can be made by analyzing Figure 6.2.1. All component primitives (gates) used there are 2-qubit and the function realized on the lowest bit is ab ( d. Each of controls can be multiplied by variable c to obtain solution abc ( d. But now, gates V and V+ need two controls. It means, that these gates should be rewritten again to 2*2 gates, but now the gates G = square-root-of (V) will be used instead of gates V and the gates square-root-of(V)-adjoint gates G† will be used instead of gates V† (Figure 6.2.3). Observe that this way we not only extend the Toffoli gate to 3 inputs in AND, but we create a general-purpose recursive method to generate Toffoli gates with any number of inputs, assuming availability of 2k-root-of-V gates. Observe that the control of each multi-controlled gate in such designs is an affine function (in this case it is only a linear function). 
An interesting observation can be made by analyzing Figure 6.2.3a. All gates used there are 2-qubit and the function realized on the lowest bit is ab ( d. Each of controls can be multiplied by variable c to obtain solution abc ( d realized in Figure 6.2.3a. But now, gates V and V+ need two controls. It means, that these gates should be rewritten to 2×2 gates, but the gates G = square-root-of (V) will be used instead of gates V and the gates square-root-of(V)-adjoint gates G† will be used instead of gates V†  (recall the G and G† gates from Chapter 4). This way, we extended the Toffoli gate to 3 inputs in AND, but we have a new problem, “how to design the controlled gate controlled by two inputs ?”. But this problem is similar to the one we already solved in Figure 6.2.1. Therefore, we deal here with certain type of recursion that we want to use generally in synthesis. Observe also that the control of each multi-controlled gate is an affine function (in this case it is even linear).

[image: image7.emf]
Figure 6.2.3a: Extension of standard Toffoli gate to 4×4 Toffoli gate by multiplying by signal c. 
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Figure 6.2.3:  (b) Realization of the 4*4 Toffoli gate using controlled-root-of-order-four-of-NOT gates, CG. Linear controls are written for all G/G† gates under them to simplify the analysis. The blocks shown with interrupted lines show the initial gates drawn according to the design from Figure 6.2.1 with additional multiplication by c (from Figure 6.2.3a).
To realize abc
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d  we have to realize each double-controlled V gate using 2*2 gates. This is done as in Figure 6.2.3b, each gate G represents square-root-of-V and thus the fourth-order-root-of-NOT. Similarly, the controlled hermitian gates CCV are built in Figure 6.2.3b using CG and CG† gates.  The circuit from Figure 6.2.3b using quantum simplification rules can be transformed to a simpler circuit from Figure 6. 2.4. This way our method re-invented the CCCNOT circuit found by Barenco (the triple-controlled NOT gate).
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Figure 6.2.4: Simplified circuit from Figure 6.2.3b. Rule G.G† = I  was used for gates G, G† controlled by c in Fig. 6.2.3b. Two gates from Fig. 6.2.3b have been thus reduced. Observe that this circuit has only 6 controlled G/G† gates, each controlled by a linear function. This is an example of Affine Root of NOT gate.
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Figure 6.2.5 shows examples of linearly-controlled V/V† gates which correspond to the realization of a factorized Positive Polarity Reed-Muller (PPRM) form as a control of Toffoli-like gates. As we see, we do not need to find the PPRM and next factorize it to find this circuit. We can just control gates V and V+ using linear (in general, affine) gates and next restore the original input values by the use of mirror gates. This method can be generalized to use arbitrary affine controlled gates and arbitrary mirror circuits.

Figure 6.2.6 realizes a pair of Hamming-distance-3 minterms on variables a, b, c but the minterms are different than in Figure 6.2.2 because of using other affine functions directly controlling the output target qubit d = 0. Figure 6.2.7 presents the realization of function 
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. Many variants of the CircuitSearch program can be created for various types of controlled gates, controlled gates and realizability constraints. The control functions may be for instance all products of literals like 
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, or all functions of 3 variables. Similar circuits can be build using controlled-square-root-of-NOT, controlled-fourth-order-root-of-NOT and in general controlled 2k-root-of-NOT for k = 2, 3, 4, 5…
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6.2.3. Design of big gates using Controlled-root-of-NOT gates

By big gates we will understand gates with 5 or more qubits. The costs of such gates increase, sometimes even exponentially, so their efficient design is very important. Such gates are very expensive in quantum realization so we will try to find inexpensive big gates and use them as much as possible as macros in synthesis. For instance, the 5 * 5 Toffoli gates are very expensive as quantum circuits since the realization of AND with many inputs requires many auxiliary gates and their mirror gates. We will illustrate this fact below. An arbitrary 3-controlled operator U can be realized using two 2-controlled Toffoli gates and a 2-controlled U gate as in Fig. 6.2.8. Next each of the 2-controlled Toffoli gates is replaced as in Fig. 6.2.1 and the 2-controlled U gate is realized similarly as in Fig. 6.2.1, leading to the circuit from Fig. 6.2.9.
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Concluding, the realization of the 3-controlled U using quantum-realizable primitives in the space of 5 qubits is shown in Figure 6.2.9.  Assuming U=NOT, the single product of 3 literals costs 15 2×2 gates while on the other hand two such products in Figure 6.2.2 cost only 8 2×2 gates. The method illustrated in Figure 6.2.8 and  Figure 6.2.9 allows to design recursively any Toffoli-like multi-input gate building a structure from quantum-realizable 2*2 primitives. This way, any quantum circuit built in PPRM, FPRM, GRM or ESOP styles using Toffoli gates, CNOT gates and inverters is converted to a quantum realizable quantum array. But this method may create unnecessarily expensive circuits. Thus we will concentrate now on cheaper realizations of gates for quantum cascades. The methods given in sections 6.2.2 and 6.2.3 are however still necessary for odd functions, such as a single minterm in the full space of products.
6. 2.4. Design of 2-interval gates
An important subgroup of ARNGs are the 2-interval gates introduced for the first time in this section. Barenco et al [Barenco95] in their paper (which is one of the most cited papers in quantum literature) introduced the method to build 3 * 3 Toffoli gates using controlled V/V† and 4 * 4 Toffoli gates using controlled G/G† gates. They verified the solutions but they did not present a general approach to build arbitrary functions of this type. Also they did not discuss how to design those big functions that are especially inexpensive.  We  achieve these two tasks in this book. 
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	S2,3,6(a,b,c,d,e,f)
	New gate
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	S2,3,6,7(a,b,c,d,e,f,g)
	New gate

	7
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	S2,3,6,7(a,b,c,d,e,f,g,h)
	New gate


Table 6.2.1: The schematic explaining construction of 2-interval functions of positive literals. Observe that all these functions are symmetrical. The table can be continued for any number of qubits.

This section has the main inspiration from the basic Barenco circuit from Figure 6.2.1. We started from this circuit but we also generalized our ideas to create a theory for synthesizing arbitrary multi-input, multi-output functions using controlled root gates. As the first generalization, we extended, for more inputs, the Barenco circuit keeping the same structure of the circuit. Here in Table 6.2.1 we list the first seven of these circuits which we will call from now on the “2-interval circuits”, as their structure is that of symmetric interval functions with two indices present and next two indices absent, and so on, as shown in Table 6.2.1. Unfortunately not all symmetric functions can be realized that way, so we will have to add more components to our cascades to create larger families of component functions to realize arbitrary functions. This concept is new not only in the realm of  quantum circuit design but it is in general a new logic synthesis concept. Observe please, that the circuit from Figure 6.2.7 does the same to four qubits as the Barenco circuit from Figure 6.2.1 does to 3 qubits. Both these circuits have the same pattern. The first circuit realizes S2 (a,b)
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d in its lowest bit, while the second circuit realizes S2,3(a,b,c)
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d. Our program generates all the functions from Table 6.2.1 as truth tables, among many others. Patterns of 2-interval and double-cube gates can be proved for an arbitrary number of inputs. Amazingly, the 2-interval functions are exactly the same as the so-called “eigenvalue functions” introduced independently by T. Sasao [Sasao07]. In addition, from each function from Table 6.2.1 we create a family of macros by inserting symbols V, V+ in all possible ways to target boxes (represented by small rectangles in Figures). An interesting example of inexpensive function of five variables is presented in Figure 6.2.10. Observe that all controls are affine and all controls are restored to variables by using mirror CNOT gates. The whole function from this Figure is a permutative function that can be used as a component (subfunction) of an arbitrary function realized by a quantum cascade.
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If we would realize functions from Table 6.2.1 using standard multi-output Toffoli gates and next macro-generate them to 2*2 quantum primitives as in section 6.2.3 the cost would be very high. The 2-interval and similar functions (and their derivative families) we call “cheap functions” because we use only CNOTs, CVs and CV†s in them, and we achieve these designs only by controlling single gates.  Whenever we have to control with non-affine controls, it becomes more expensive, we have to add mirrors, sometimes ancillas and so on. 
A question may arise, given an arbitrary function, how can we use our inexpensive special circuits to realize some functions to be used as components of arbitrary functions. The following theorem is of help.

Theorem 6.2.1:  
Assume that:

1. A binary n-input,  m-output Boolean function F is to be realized in a quantum cascade.
2. We assume the width  n+m of the cascade. The cascade has n input qubits (that can be factorized and reuse) and m output qubits (that can be factorized and reused) and no more intermediate qubits.
3. We assume that mirror circuits can be used, multiple times if necessary, for every qubit to restore its value to the input value or some intermediate value.
4. A finite set of 2n binary base (Linearly Independent, orthogonal) functions on n variables are given. 
Then function F can be realized in a quantum cascade using only Toffoli, Feynman and NOT gates where each output of  F is realized as an EXOR of subfunctions selected from the base functions and a constructive method of selecting these functions exists.
Proof. It has been proved in  [Perkowski95] that for every 2n * 2n  orthogonal binary matrix M representing a set of 2n binary base functions there exists exactly one expansion of arbitrary n-argument Boolean function F in this base where the coefficients of the inverse matrix M-1  give the values of spectral coefficients of these base functions. The operations of multiplying rows by columns of such matrices and multiplying rows by column vectors are number-by-number EXORs (Modulo 2 additions). Thus for every set of orthogonal (Linearly Independent) functions we can find one unique solution in the form of EXOR of those base function which spectral coefficients are equal 1  (look for examples in Chapter 9??). However, if base functions are arbitrary, then:
1. They can be very expensive to realize

2. They may require more ancilla bits than n+m.

Therefore we restrict ourselves only to those base functions that:

1. Are inexpensive as built from affine gates of this chapter

2. Allow to be realized without more than n+m ancilla bits.

Of course, the theorem and based on it synthesis method can be extended all base functions of all families but this would lead to many ancilla bits and also the number of families of base functions is extremely large so it is more reasonable to restrict our method only to some families. Thus considering only inexpensive families is a good idea.
Affine gates are very useful to create gates for base functions to be used in new extensions of MMD algorithm [Miller03] or any other algorithm for quantum array synthesis, because our method creates affine gates for any number of inputs. Observe that in circuits minimized using standard ESOP (Exclusive Or Sum of Products circuits) minimization techniques only the Toffoli-like gates are used, i.e. k*k Toffoli, CNOT and NOT. But in the proposed method there are many more base functions which in addition have small quantum costs. For instance, based on the sections covered so far we can dispose as base functions all the new double-cube, 2-interval gates and other cheap gates built from macros. With next sections and chapters we will add more inexpensive base functions to be added to base families. This idea is new and specific to quantum circuits, because cost functions based on 2*2 primitives did not exist in classical and reversible logic. 
6.2.5. Affine Toffoli Gates.

The second class of the (binary) affine gates that we invented are the Affine Toffoli Gates (ATG). Example of such a gate is shown in Figure 6.2.11. As we see, the Toffoli gate is surrounded with Feynman gates in such a way that the original argument variables a, b, c, d are restored on the outputs of the entire affine Toffoli gate. Thus these input variables can be reused directly be the next gates in the cascade. The Feynman gates on the left serve to create local linear preprocessors and the Feynman gates on the right are mirror circuits to restore the original argument values. This construction method is very general. The same types of gates are used in Polarity-Based Affine Forms as gates (section 6.2.4). The gate from Figure 6.2.11 can be for instance treated as a special case of such a form with the first column as the affine preprocessor and the last column as the mirror affine postprocessor. This ATG gate is a very powerful generalization of Toffoli gate for any number of inputs. It should replace Toffoli gates in all synthesis algorithms. Observe that Fredkin and Miller gates are special cases of ATGs.
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As we see in Figure 6.2.12, four minterms of four variables each are realized in just a single gate with quantum cost 5 of 2*2 gates (for Toffoli gate) plus 4 ( for four Feynman gates ). The total cost 9 is very small when compared to the cost of 4 Toffoli gates to realize minterms separately (which are 2-input, 3-input or 4-input, depending on quality of AND/EXOR minimizer applied). It uses product groups that are created by flattening of the formula originating for F directly from Figure 6.2.11. The KMap from Figure 6.2.12  shows a characteristic pattern of true minterms for this kind of gates.  Our synthesis software finds such patterns, but they can be also found from KMaps in “hand synthesis method”. Figure 6.2.12 can be explained algebraically as in Figure 6.2.13. As we see the Affine Toffoli gate is the cheapest of all realizations of KMap from Figure 6.2.12. 
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Concluding on material from this chapter completed so far: we can create many types of inexpensive gates to be used in quantum cascades, they all are based on the concept of affine gates which are used in various ways to control other gates, such as classical  permutative  gates and truly quantum gates such as V.
6.3. MORE ON AFFINE GATES 
6.3.1. Design of 3 * 3 gates and circuits using controlled gates.
Let us first look again to the well-known Tofoli  gate circuit from Figure 6.3.1.1. It includes only 2 * 2 quantum realizable gates. It is close to real quantum hardware. So calculating the number of 2 * 2 quantum gates as a pulse cost approximation is a good heuristic. We will use this heuristic in many examples that follow. Many circuits of this type were generated by Hung et al [Hung06], they use only 1-qubit gates – inverters and 2-qubit gates – controlled-V, Controlled-V+ and Controlled-NOT. Observing these circuits one can appreciate that all controls are linear or affine functions. Although the method given by Hung et al gives exact minimum solution, it is very time consuming and thus restricted to small circuits. The methods that will be presented in this book can solve all examples from [Hung06] with much less effort and find approximate solutions for big functions quickly. These new methods are however all not exact, they do not give guarantee of the minimal cost. However, in all examples that we considered the costs were very close to minimal. 

Analyzing these types of circuits and appreciating small relative cost of NOT and Feynman gates, we assume below that all controls in our approach will be affine functions – linear functions and their negations.  Let us observe in Figure 6.3.1.1 that the last CNOT on right has no effect on the output in qubit c. It serves the only role of restoring the input b to its original state. This is not always necessary (as shown in Figure 6.1.3). Figure 6.3.1.2 illustrates two points of view on a macro. Its internal view with 2*2 quantum primitives and its external view as a permutative gate. Remember that in all next examples we will use these views and we should macrogenerate larger gates to the level of 2*3 primitives. To save the time and space we will not do this, however doing this would allow the reader to appreciate the real gain in terms of quantum costs of the circuits designed by us in this and next chapters.
[image: image29.emf]
Figure 6.3.1.1: Realization of Toffoli gate with output logic equations. Only 2×2 gates are used.
[image: image30.emf]
Figure 6.3.1.2: The cost of Toffoli gate is five 2-qubit gates. On the right we see the symbol of Toffoli gate as a double-controlled NOT. Hence the another name of Toffoli gate as CCNOT gate.
[image: image31.emf]
Fig. 6.3.1.3: Peres gate has a cost of  four 2-qubit gates.
6.3.2. Design of 4 * 4 gates and circuits using controlled root gates
[image: image32.emf]
Figure 6.3.2.1:  With d=0 we realized here a symmetric function of variables a, b, c. Observe that + can be replaced with 
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 in the formula for S23 (a, b, c). S23 (a, b, c) =  S2 (a, b, c) + S3 (a, b, c) is a  totally symmetric function of a, b, c.
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Figure 6.3.2.2: Realization of function D = maj (x,y,z) 
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d = [(ab)y + (ab)z +yz ] 
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 d. Please note the role of the ancilla bit 
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in the third qubit from top. This entire circuit requires just one ancilla bit.
Similar circuits can be build using controlled-square-root-of-NOT, controlled-fourth-order-root-of-NOT and in general controlled 2k-root-of-NOT for k = 2, 3, 4, 5….

It is well known that an arbitrary two-controlled operator U can be realized as shown in Figure 6.3.2.3. Here the operator U = W2, where W is an arbitrary unitary operator. This circuit assumes that W * W+ = I and W * W = U. The circuits like in Figure 6.3.2.3 is a prototype that can be generalized in two ways:
1) to binary permutative circuits with more than two control wires (this chapter), 
2) to multiple-valued permutative circuits, such as multiple-valued Toffoli, SWAP or Feynman gates (Chapter 9).
[image: image38.emf]
Figure 6.3.2.3: Realization of 3-input double-controlled U gate with use of two-qubit gates. 
Let us first observe that all existing synthesis/optimization methods for quantum and reversible (permutative quantum) circuit synthesis (Cosine-Sine decomposition, De Vos, Miller and MMD, Perkowski et all ) use Toffoli gates with more than 2 controls. These gates are often counted as having the cost of one, but in reality they are very expensive when realized with 2-qubit gates and we know that only 2-qubit gates are truly quantum realizable. Gates with many controls can be recursively decomposed as shown in Figure 6.3.2.4. In this figure the 4–controlled U is replaced with two 3-controlled NOT gates and a single 2-controlled U. The 2-controlled U can be next realized as shown in Figure 6.3.1.2 and the 3-controlled NOT gates can be decomposed again as in Figure 6.3.2.4. This solution requires adding one ancilla bit.

[image: image39.emf]
Figure 6.3.2.4: Realization of n-controlled U with 2-controlled U and two (n-1) controlled inverters. This approach requires one ancilla bit.
Theorem 6.3.3.1
 Every single-output Boolean function of n variables can be realized with n + 1 bits (One ancilla bit) using only 2×2 quantum gates. 
Proof.

Every function of 2 variables can be realized in 3 qubits as an ESOP or similar form using 3*3 Toffoli gates with 2 controls. Next each Toffoli gate can be transformed to a combination of 2*2 primitives as in Figure 6.3.1.1. Similarly any function of 3 variables can be realized as an ESOP using 4*4 Toffoli gates, each realized as in Figure 6.2.3. When function has more than 3 variables it can be recursively macro-generated to smaller blocks using methods from Figures 6.2.8, 6.2.9, 6.3.2.3 and 6.3.2.4.
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Figure 6.3.2.5: Realization of (n-1) controlled NOT for a (n + 1) * (n + 1) width of quantum register. Pay attention to smart use of two mirrors.
To illustrate this theorem, for instance, the 4-controlled Toffoli in the space of 6 qubits can be realized as shown in Figure 7.3.2.4. Two 3-controlled and two 2-controlled Toffoli are introduced. Next each of the 3-controlled Toffoli gates is replaced with a structure of 2-controlled Toffoli gates. Finally all 2-controlled gates are converted as in Figure 7.3.2.3 to quantum-realizable 2 * 2 primitives.

Similarly, arbitrary 3-controlled operator U can be realized using two 2-controlled Toffoli gates and a 2-controlled U gate as in Figure 6.2.8. Next each of 2-controlled Toffoli gates is replaced as in Figure 6.3.1 and the 2-controlled U gate is realized as in Figure 6.3.2.3.
The methods illustrated in section 6.3 allow to design recursively any Toffoli-like multi-input gate using a structure of quantum-realizable 2×2 primitives. This way, any of PPRM, FPRM, GRM, ESOP or factorized ESOP circuits could be converted to a quantum realizable quantum array. However, as shown in this, previous and next sections of this chapter, the designs of many functions can be improved.
6.4. Design of symmetric functions
Designing symmetric functions is useful in many practical problems. It is also easier to analyze than arbitrary functions. Therefore we analyzed design of symmetric functions using our methods.

We will use various definitions of symmetry of Boolean functions.

Definition 6.4.1: A Partially Symmetric function with respect to variables a and b is a function that if you replace in the formula a with b, you get the same function. If a function is symmetric with respect to every possible pair of input variables then this extended function is called totally symmetric. 

This is the simplest classification of symmetric functions which definition we use in this chapter. But there are many symmetric function definitions that we do not use yet. For instance when any subset of variables can be negated or not, we have polarity concept which  has 2n symmetric polarities. Then we have generalized Lattice Symmetries [Perkowski97]. We create exors of two cofactors, exors of three cofactors, exors of four cofactors, etc and compare them for equality. We are comparing exors of cofactors in all possible ways: this is the most general classification of symmetric functions [Lattices, Jeske]. All these symmetry based methods are basically related to restricting search.  If we have symmetric function, or unate function or some special function type then it becomes possible to use mathematics to somehow restrict the search. We want to minimize these types of functions and we want to minimize the numbers of ancilla bits for various quantum costs.  That means we want to do everything possible to avoid using standard large Toffoli gates: the more inputs, the more expensive they are. These ideas can be useful to create gates,  gate libraries and circuits.  Below we use only some subsets of these ideas.

6.4.1. Methods to analyze totally symmetric functions.
The interval functions from section 6.2.4 are all symmetric. Let us think what is the function S2,3 of (a,b,c) ? Let’s show for three control variables a, b, c. First, we will generalize this pattern, we take every argument input variable to control separate V gates and we created as EXOR of all these controls to control V†. We can reconstruct the original signals in input variables but we do not care about this in general. We care only about the data path qubit: how it is controlled. We can analyze this circuit to learn more (Figure 6.4.1).  We can generalize this pattern from Figure 6.2.10  to Figure 6.4.1 and next to Figure 6.4.2.
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Figure 6.4.1: Realization of  S2,3 (a, b, c, d, e ) 
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 f  using ARNGs. Observe the general pattern of connections.
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Figure 6.4.2: Realization of  S2,3,6 (a, b, c, d, e, f) 
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Figure 6.4.3: KMaps for the lowest qubit of the circuit from Figure 6.2.2. (a) For controlled V, (b) For controlled V† , (c) the result of the composition of quantum maps 6.4.3a and 6.4.3b for the entire circuit from Figure 6.2.2.
Each, a, b and c contribute V’s in KMaps (Figure 6.4.3a). Combining them, we get majority (Figure 6.4.3c). Now, we can create those patterns for any number of qubits to get cheap realizations. If we would realize these functions using standard multi-output Toffoli gates and next macro-generate them to 2×2 quantum primitives the cost would be very high. These 2-interval functions we call “cheap functions” because we use only CNOTs, CVs and CV†s here, and we achieve this design only by controlling single gates.  Whenever we have to control with more than two controls, it becomes more expensive, we have to add mirrors, sometimes ancillas and so on. So this gate construction method produces very cheap gates, we showed here that all these gates are cheap although they look more complex than Toffoli gates in KMaps. This is shown for three other 2-interval functions in Figures 6.2.10,  6.4.1 and 6.4.2. So, if we have a complex synthesis problem with many inputs, if we find any of theses gates be useful in the circuit, this will be the cheap part of the circuit. Recursive formula can be derived comparing those functions in formal way using our examples in Figures 6.2.10,  6.4.1 and 6.4.2. Unfortunately from these functions, we can not build every function, we need some other gates.  But this idea was a good beginning.
Now, we will do the following. One generalization will be to take all possible linear functions, or affine functions as controls, this is the topic of section 6.5. Then we found that, it is even more interesting when these control functions were reversible not only linear. That would be another generalization. But before we start working with these controls which are not affine, we were still using affine functions but in more complex ways. 
A possible approach is to implement a software simulator; one should have some kind of scripting methods that will generate all these problems automatically in a smart way. Again, this is a new topic, solved by nobody before, how to build the above presented type control which is only linear or affine, in the most efficient way. For instance, we may simulate all functions which will be created in the above Figures by replacing target V and V+ in all possible ways by gates V and  V+. These functions are all permutative and they can be all used as cheap functions in our synthesis methods.

Controlling with affine functions is always doable with no ancilla bits, because it uses only CNOT and NOT gates which can be next mirrored after using them to control something, in the same collecting qubit to restore the original value of the function (such as an input). For instance,  whatever the affine control, like a ( b ( c’, one can get this control signal 
“in place” (with no ancilla bits) using only CNOT and NOT gates. And then we can always concatenate mirror circuits, thus restoring the original inputs a, b, c. 
In addition, each linear function may be negated. We can substitute  4th order square roots of NOT in place of V, V†. We can systematically build gates of the types from Figures 6.2.10,  6.4.1 and 6.4.2  using any order roots of NOT.  What is the difference with the V/ V† circuits? Now we can rotate in the target qubit by half smaller angles, etc.  Therefore, we can prove that we can build any gate but we use always half of the angles. There is a danger of using this method in some quantum technologies. Because, if we have very many inputs, these angles will be very small, may be it will be susceptible to noise or decoherence. 
Now the open question is, should we build Toffoli gates with restricting the angles, or should we rather add ancilla bits. 

The problem formulation is: we want to add minimum ancilla bits and restrict angles may be only to 90, 45 and 22.5 degrees, then we are able to build every Toffoli gate. The possibility of doing this was demonstrated in examples above. But how to do this best for each function is an open problem and is technology-related.

But now, when we have made this decision, we can analyze the cheap functions for these constraints. However the problem to be solved complicates, as when we want  to realize arbitrary  symmetric functions we have very many ways to combine the above two approaches and many choices of selecting the rotation angles. In a recent paper [Maslov97] Maslov proved the heuristic method for symmetric functions with standard k-input Toffoli gates. These methods can be improved by methods presented in this chapter.
When one uses standard multi-input Toffoli gates, one either has to use the method from previous sections to make it quantum realizable or one needs to add ancilla bits.  The methods presented here can find less expensive quantum realizations for several symmetric functions of few variables. But we still do not present a method to synthesize arbitrary symmetric functions to be realized systematically with interval gates from Table 6.2.1 and other affine gates. Approaches to solve this problem will be discussed in the sequel but the general problem is left for future research. 
Here is some helpful theorem.

Theorem 6.4.1: 

Any binary symmetric function can be built by Exoring a subset of symmetric base functions.

Proof.

It can be easily proved that S U ( V = S U ( S V. The idea would be thus to realize all possible symmetric functions S X as base functions and calculate the quantum cost of each of these base functions. All orthogonal bases can be then created from these base functions and their matrices created. Next every symmetric function can be decomposed in each base and the total cost can be calculated for this base. Repeating this calculation for each base will give the minimal solution (these methods are illustrated in detail in Chapter 9?? for general functions but symmetric base functions are just a special case).
Example 6.4.1.

In case of 3 variable functions, the following symmetric  functions are inexpensive base functions: S 1 (a,b,c) from Figure 6.4.4a, S 1,3 (a,b,c) from Figure 6.4.4b (a linear function), S 2,3 (a,b,c) from Figure 6.4.4c (an Affine Root of Not Gate). Creation of single-index function  S 2 (a,b,c)   = S {2,3}( {3}  (a,b,c)   = S 2,3 (a,b,c)  ( S 3 (a,b,c) is shown in Figure 6.4.4d. Creation of single-index function  S 1 (a,b,c)   = S {1,3}( {3}  (a,b,c)   = S 1,3 (a,b,c)  ( S 3 (a,b,c) is shown in Figure 6.4.4e. Creation of double-index function  S 1,2 (a,b,c)   = S {1,3}( {2,3}  (a,b,c)   = S 1,3 (a,b,c)  ( S 2,3 (a,b,c) is shown in Figure 6.4.4g. Explanation of the composition using a Kmap is given in Figure 6.4.4f. Using the transformations from Figure 6.4.4h the circuit is finally optimized to the form from Figure 6.4.4i. As we see, all single-index and double-index symmetric functions of three variables are inexpensively realized with our methods (remember the macro-generation to CV and affine gates for products of variables). Similarly function S 1,2,3 (a,b,c)   and other triple-index symmetric functions are inexpensively realized.
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Figure 6.4.4. Synthesis of symmetric base functions and symmetric index-functions to illustrate the concept of symmetric bases. (a) Function S 1 (a,b,c), (b) Linear function S 1,3 (a,b,c), (c)  an Affine Root of Not Gate function S 2,3 (a,b,c), (d) Creation of single-index function  S 2 (a,b,c), (e) Creation of single-index function  S 1 (a,b,c), (f) Kmaps to analyze the method, (g) Function S 1,2 (a,b,c) created by EXORing base functions, (h) auxiliary equivalence transforms, (i) Optimized realization of function S 1,2 (a,b,c) based on applying transformations from (h).

When we try to extend this method to functions of four and next five variables we see that the realizations of not all symmetric functions using our method are cheaper than the solutions from Maslov. However, a significant fraction of symmetric functions has smaller quantum costs than in Maslov’s designs [ref Maslov]. Thus, in the worst case one may use the method from Maslov never obtaining worse results.
The presented here research on symmetric functions will also be very useful to create gates for MMD algorithm [Miller03] or arbitrary other algorithm for quantum synthesis, because we can create the inexpensive symmetric gates for any circuit width. We can build arbitrary quantum functions from these gates and using the methods from chapters 4 - 9.  Observe that in standard ESOP minimization we use only Toffoli-like gates, but we see that in quantum we have all these majority gates, 2-interval gates and other which are very cheap gates. Nobody has proposed this idea so far, because problems like this did not exist in classical logic. 
When a reversible function is to be realized, every output of it is a balanced function which has  equal number of ones and zeros. This property is extremely useful to limit the search. Every reversible gate like Toffoli, Miller, Fredkin has the property that every output function of each of these gate is balanced: half zero’s and half ones. This property immediately decreases the space of search very much. Also any kind of symmetry limits the search extremely. In our basic Barenco-extended circuits, with V and V†, if we do every possible permutation between V and V† like a binary order, each of them will generate some new gate. Because we randomly combine these gates, we create many gates that are not permutative, as we have single V, then it will have half probability of ones and half zeros. Always we create a new design and the program CircuitSearch will verify if they are permutative. This approach is based on analysis, first our search method was naïve. Based on analysis and generalization we created next systematically new improved library of gates for small numbers of variables. The hierarchical design methods of blocks shown in Chapter 8 demonstrate the use of such gates. 
If the single-output function is balanced then we can realize the function directly and with no ancilla bits. Our methods  generalize therefore the Maslov’s method [Maslov07]. Although Maslov deals only with Toffoli gates and we deal with many types of controlled gates, the properties of layers are very similar. A new definition of symmetry is possible. If we substitute in the structure the controlled V and controlled V† gates in all possible ways, we  will obtain many quantum  gates. So we can now introduce the concepts of the quantum circuit symmetry. By introducing the rotation here, we will introduce many quantum functions, some of them will be binary, other will be not binary. Everything that we invent here is basically a generalization of classical binary symmetry. Now we have to use these symmetrics in quantum circuits with minimum number of ancilla bits and use also Toffoli gates with the minimum number of inputs. Every component of this function can be reused to build other function. These general ideas are detalized and illustrated in next sections.
6.4.2. Conclusions on 2-interval and symmetric functions.

We recall Toffoli gate circuit from Figure 6.2.1, basically many ideas of our book  start from this circuit [Barenco95]. V is the square root of NOT. Most important that we can change the V gate from square root of NOT to the 4th of NOT, the 8th  of  NOT and so on.  Again NOT. NOT = I ( identity or wire or same as before or can be cancelled). The rules are V · V = NOT,       NOT · NOT = V · V† =  I (means identity or wire or goes through or can be cancelled or omitted). Next the rules are G · G = V, G · G† = I and so on. The idea occurred therefore to create the software which will generalize all these quantum identities for arbitrary root gates, extend for more inputs, etc, keeping the structure. 

Figure 6.2.1 is just one example; our exhaustive search program CircuitSearch generates all such combinations or structures. When  the program works for 3 inputs from which a, b are control bits and c is controlled bit, we search for all possible affine function with V, V† and NOT.
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Figure 6.4.5:  Example of a structure with affine controls of V/V+ gates.
Our generalization will be here to take all possible linear functions (or affine functions) or some subsets of them, randomly generated as the controls of root gates in the target qubit. See an example in Figure 6.4.5. This is a new approach to synthesis again. Instead of checking by hand and trying to prove facts to invent new useful gates for synthesis, we decided to write a simulator/generator to help us in this analysis.
Observing next all these new circuits generated by our program CircuitSearch, we found many new circuits and more importantly we got new circuit realization ideas. The circuit types from chapters 2 - 6 were generated and more generalized circuits and gates from chapters 7 - 8 were next generated. This program, a fast prototyping tool stimulated our minds. One can appreciate that all controls are linear or affine functions. Thus all controls in our basic blocks  will be affine functions – linear functions and their negations. 
As we see above, the principle of our approach is very simple. Knowing a powerful pattern of creating circuits from this chapter, we use this pattern to systematically or stochastically generate new gate families of interesting gates. In our first variant of the generator we have all affine functions as control functions and we use V, V† and NOT in the data path. It is next relatively easy to generalize this approach using three methods: 

1) generate non-affine controls in variables a, b and c to generate such circuits.
2) add ancilla bits,

3) extend the set of root gates in the target qubit.
6.5. The Program Generator to Synthesize Quantum Arrays with “Affine Root of NOT” Gates  
6.5.1. Introductory ideas

Our idea at first was to allow our computer to spend much time, even days and weeks, to find the exact minimum solutions (to useful gate and next to use such “inventions” as higher level “building blocks” in quantum circuits. Exhaustive search [Lukac05, Miller04] has been already used before in reversible logic design, but there are many ways how the exhaustive search can be organized, and they differ in processing time and memory usage. We investigated several types of exhaustive search strategies applied to particular quantum circuit structures. We found that for this kind of problems the A* algorithm known from AI [Nilsson71] operates very similarly to the breadth first search. Our IDDFS [Giesecke07] search is similar but it is easy to program and uses less memory, thus allowing to minimize larger circuits. Finally in chapters 7 and 8 we proposed even more general search strategies that we used already for other problems. We use search strategies also in this chapter.  
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Figure 6.5.1.1: Generalized structure to explain the operation of the CircuitSearch generator program.

Basic explanation of our software follows. The CircuitSearch program creates (as per our specification that means using affine control function and taking all possible combination of V, V† and NOT, it can be with all V’s or combinations) one possible circuit (next its function) for 3 input variables (a, b, c) as Figure 6.5.1.2. In Figure 6.5.1.2 all inputs a, b, c are the same as the outputs A, B, C. That means, in the program a, b, c lines are only for activation of gates in the target line. At first, we only care about single output function f.

[image: image58.emf]
Figure 6.5.1.2: The circuit given to test our program CircuitSearch. The truth table of this permutative circuit is the program’s input.
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Figure 6.5.1.3: Partitioning of the quantum circuit from Figure 6.5.1.2 for Genetic Algorithm used by previous authors.
Now let us present the inner loop of our program. Here the program verifies the generated by it circuit comparing its truth table with the table of a specification function, as explained below. This can be a binary KMap, it can be a truth table as well.  Program will compare the stored KMap (the binary function) with this function generated and simulated from the circuit’s structure, cell by cell. If it completely matches in all 2n cells, then the program declares that it found such circuit after exhaustive search. Below KMap is for the inner loop of the program. In this case the program will say that after exhaustive search it found this (Figure 6.5.1.5). It is for 3 input variables. Program works for 4, 5 and as many as possible input variables. As CircuitSearch is memory intensive, how many input variables are possible depends on the problem size. We tried to use our program for the maximum number of variables. Thus, we have two loops in our program, outer loop will create all binary functions (as their circuits) using exhaustive search and our problem-defining methodology and constraints specification ( with all possible  affine functions of input variables  and  applying all possible V, V† and NOT in the target qubit). The program’s inner loop compares the circuit found with the function specification in the form of a truth table or a KMap. With this specific function, our program verifies whether this specific function is generated by the program by comparing all minterms.
Suppose one wants to use the CircuitSearch program to create the structure of  f  = majority ( a, b, c)
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0 = majority (a, b, c). The circuit from Figure 6.5.1.2 is expected to be found. However, because of the way how circuits are partitioned in our generator (Figure 6.5.1.1), the circuit is not partitioned as for Genetic Algorithm ( Figure 6.5.1.3) but it is partitioned as in Figure 6.5.1.4.
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Figure 6.5.1.4: An example of created circuit for 4 segments, 
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function   from  Figure 6.5.1.3 but generated  directly for a single control,  found by our program.

This is a circuit that contains 3 inputs and 4 segments. The first segment has the control “a” and the target 0 as inputs. While the fourth segment takes 
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 as its control input. One possible circuit for 3 input variables (a, b, c) is presented in Figure 6.5.1.2.  In this Figure, all inputs a, b, c are the same as outputs A, B, C. That means, in the program a, b, c qubits are only for the activation of the target qubit. 

The only care is given to output f.  The program calculates the KMap for output f. If any non binary value shows up in the simulated symbolically QMap output f, such as any single value like V, V† in the QMap, then the output f is not binary. Such output is not useful as we synthesize only permutative circuits. The “Affine CircuitSearch” system omits those non binary outputs and searches for the next possible circuit which will hopefully correspond to the binary specification function. 
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Figure 6.5.1.5: Example KMap Specification of binary values in Affine Circuit Search method for the target qubit  f  from Figure 6.5.1.2.
Hence the specification as in Figure 6.5.1.5 is finally matched in every cell, of course if sufficient time  and memory space is allotted to CircuitSearch.

6.5.2. Reduction of circuits to binary

Reduction of general quantum circuits to binary circuits is done according to the following rules:

CircuitSearch uses only V, V†, NOT gates with affine function. It uses the following formulas: 

a) V = square root of NOT, 

b) V
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 V = NOT

c) V 
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 V† = I

d) NOT 
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 NOT = I

A step by step example:

Example 6.5.2.1:
Figure 6.2.4.1 shows a typical quantum circuit that can be found by the program. It is explained below how Quantum Map rules are used to calculate the final QMap of the circuit model shown in Figure 6.5.1.4. Inputs a, b, c control the gates. So that when the control input to the controlled gate is 1, then that gate becomes active. Input d is assumed to be a 0.
1.  The QMap for input a controlling a V gate is shown in Figure 6.5.2.1. 
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Figure 6.5.2.1: QMap 1 (symbolic) for V controlled by input a in circuit from Figure 6.5.1.4.

2.  The QMap for b  controlling a V gate is shown in Figure 6.5.2.2.
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Figure 6.5.2.2: QMap 2  for V controlled by input b.

3.  The QMap for the V gate controlled by input qubit c is shown in Figure 6.5.2.3.
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Figure 6.5.2.3: QMap 3 for V controlled by input c.
4.   The QMap for combined QMaps 1, 2, 3 for Figure 6.5.1.4 is shown in Figure 6.5.2.4.
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Figure 6.5.2.4: The combined QMap for 3 V’s controlled by inputs a, b and c each.

5.  For the fourth gate:  QMap for a
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 c   becomes   KMap for a
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c, Figure 6.5.2.5
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Figure 6.5.2.5: QMap for a
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c is a KMap.
6.   QMap for 
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 controlling V† gate is shown in Figure 6.5.2.6.
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Figure 6.5.2.6: The QMap of  V† controlled by control function a
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c.
7.  QMap 6  and  QMap 4 are combined to become QMap 7, as shown in Figure 6.5.2.7
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Figure 6.5.2.7:   Combinning QMaps with composition operator for the entire circuit from Figure 6.5.1.4.
8.  Using our formulas the QMap can be reduced as in Figure 6.5.2.8.
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Figure 6.5.2.8: Reduction of  the symbolic QMap to the standard KMap of the function realized by the exhaustively generated circuit. I = I (d) = d = 0 and NOT = NOT (d) = NOT (0) = 1.
1. Since the final QMap has value 0s, 1s, I (identity) and NOT. Then this circuit is a binary circuit. It is accepted by the program as the solution to the formulated specification function from Figure 6.5.1.5. It can be printed as soon as it is found. If the search is completed for all circuits within given constraints, then we know that this solution is the exact minimum.
The current system is intended to generate all possible QMaps using the exhaustive search. 
6.6. Using Cheap Quantum Gates (CQG) in general AND/EXOR synthesis.
6.6.1. From Affine Root of NOT Gates to Affine Toffoli Gates and Affine Complex Gates.
The cheap gates are based on symmetric composition of CV and CV† gates. Another cheap gates realize affine functions. Compositions of these two types of inexpensive gates allow to realize other functions with reduced costs. This section discusses some of the composition and universality problems.
Example 6.6.1.1:
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c)

Figure 6.6.1.1: Re-use of the basic majority pattern:  (a) The function of the basic circuit with target qubit set to 0, (b) exoring the basic majority with another cheap function, linear 
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a

Å

function,  leads to another majority, (c) exoring one cheap function leads to another cheap function being one more  majority function ( polarity shift only).

Now, we know that the realization of the three-input majority is cheap and the realization of CNOT is also cheap, we ask ourselves the question “what other functions can be inexpensively realized by combining these two types of gates?” Figure 6.6.1.1b shows that by EXORing with 
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 we obtain another majority function, but this time with a different polarity. The same is true while EXORing with 
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- Figure 6.6.1.1c.
However, as illustrated in Figure 6.6.1.2, when EXORing with variable c we obtain a new pattern of dual minterm functions known to be difficult to realize in AND-EXOR logic (see chapter 5). Similarly, the realization of the majority functions with all their possible polarities is cheap (Figure 6.6.1.1). Other dual minterm functions (called also minterm pair) for 3 variables are shown in Figure 6.6.1.3 a,b.
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Figure 6.6.1.2: Shows that by exoring with  variables we create dual-minterm functions of Hamming distance 3.
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b)
Figure 6.6.1.3: Exoring the cheap functions. a) Presents that by exoring with a linear function of  3 variables we obtain  the negation of the dual function 
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. b) Shows that exoring with the affine function 
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 we obtain the dual-minterm  function 
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Concluding, by combining all ARNGs of 3 variables with all affine functions we can create all dual-minterm functions. Therefore every even function of 3 variables, i.e. a function having an even number of minterms can be realized with reduced price using our approach. If  the function to be realized is odd, then all its minterms but one are realized using this approach, so the improvement is also  substantial. The remaining minterm (full product of all variable literals) has to be however realized as a standard 3×3 Toffoli gate, which is expensive. This needs to be done however only for one minterm, so in general only one multi-input Toffoli gate of the highest complexity is used. 
Example 6.6.1.2:
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Figure 6.6.1.4: The Even HD3 function to be synthesized in Example 6.6.1.2.
Given is function F(a,b,c) from Figure 6.6.1.4. As we see, this is an even function as it has 2 true minterms. It is also a “minterm pair”  function of HD = 3. Thus we expect that there is an inexpensive realization of this function.  Using standard AND/EXOR logic  we obtain GRM
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 which leads to the realization from Figure 6.6.1.5.
[image: image99.emf]
Figure 6.6.1.5: Standard method to realize the function from Figure 6.6.1.4. It uses GRM and factorization.
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Figure 6.6.1.6: Analysis to be used in our new method to realize the function from Figure 6.6.1.4. Because 
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Figure 6.6.1.7: Quantum Circuit  for  F based on equation 
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The solution from Figure 6.6.1.7 requires seven  2×2 gates and three inverters. The solution from Figure 6.6.1.5 requires two  3×3 Toffoli, two CNOT and one inverter, which means ( 2×5 + 2) =  12  2×2 gates and one inverter. Both these solutions are clearly better than the direct circuit realization with two 4×4 Toffoli gates. This suggests that every even function with 2 r minterms can be represented by exoring r  dual-minterm function. Every odd function can be realized as an EXOR of a minterm and an even function. Therefore, our method improves the cost of every Boolean function. (We discussed only the single-output case so far). The function with 2r minterms should be partitioned to r “minterm pairs”.

We proved therefore the following theorem:

Theorem 6.6.1.1.

Every function of three variables that has more than one minterm can be realized with reduced cost using  the introduced earlier ARNG gates.

This property is also true for even functions of any number of argument variables. To prove this fact let us first consider functions of four variables.

Proof.

Every function is either even or odd. Every odd function of 3 variables that has more than one minterm can be decomposed to an even function and a minterm.
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(b)
Figure 6.6.1.8: Function S2,3(a, b, c, d)
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a . (a) The Circuit  (b) KMap analysis of this circuit.

The even function realized with ARNGs always brings gain and larger groups are always better ( Figure 6.6.1.9, Figure 6.6.1.10).

Boolean function for the circuit from Figure 6.6.1.8 can be calculated from composition as S2,3(a, b, c, d)
[image: image108.wmf]Å

a. Figure 6.6.1.8b shows the analysis of this function.
Example 6.6.1.3:
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Figure 6.6.1.9: For function f from Figure 6.6.1.9a the symmetric grouping is shown in Figure 6.6.1.9b, while a non symmetric grouping is shown in Figure 6.6.1.9c. The grouping from Figure 6.6.1.9b is realized in Figure 6.6.1.9d while the grouping from Figure 6.6.1.9c is realized in Figure 6.6.1.9e.
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Figure 6.6.1.10: Realizing bigger groups is always better. (a) decomposition to 21-minterm group and  a 22-minterm group, (b) decomposition to two  21-minterm groups has a higher quantum cost.
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Figure 6.6.1.11: Examples of  four variables functions that can be generated from 2-interval and affine functions.
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Figure 6.6.1.12: (a) EXOR decomposition of function from Figure 6.6.1.8. (b) S3 (
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, b, c, d), (c) realization of HD4 function of 4 variables using the crosslink synthesis operator of cube calculus [Perkowski], (d) its realization.
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Figure 6.6.1.13: (a) S3 (
[image: image128.wmf]a

, b, c, d) and its factorized equation with Affine Toffoli gates, (b) corresponding quantum array, (c) realization of function from Figure 6.6.1.12c as a composition of inexpensive circuits.
Using extensions of this decomposition one can prove that every even function can be decomposed to a pair of minterms (with Hamming distances HD1, HD2, HD3, …. , etc) and often also to cheap affine and 2-interval functions of other types.
For instance, every HD4 minterms pair of 4 variables can be realized by composition of inexpensive (affine and 2-interval) circuits. The function F with more than one minterm can be realized with affine gates with cost savings when compared to a solution to this function with multi-input Toffoli gates. The single-minterm functions can not be improved by using affine functions. While grouping 2k minterms to affine functions, the symmetric realizations are always better.
6.7. Affine Polarities.
Affine preprocessor is any vector of affine functions. Every function can be realized into standard polarity preprocessor Pi, affine polarity preprocessor APi, PPRM, mirror of APi and mirror of Pi.

Algorithm 6.7.1:
For all polarities Pi do:

    For all affine APj polarities do:

a) transform function F to 
[image: image129.wmf]F

 in this combined polarity Pi •A Pj
b) calculate PPRM for Pi • A Pj 

c) realize the circuit of the polarity preprocessor Pi and its mirror post processor  Pi-1
d) realize affine polarity pre-processor A Pj and its post-processor A Pj-1, insert this pair between Pi and Pj ,
e) insert PPRM in the middle between A Pj  and A Pj-1.
The same is true for every single gate, as shown in Figure 6.7.1 and Figure 6.7.2.
[image: image130.emf]
[image: image131.wmf])

)(

(

)

)(

(

e

b

d

c

f

e

c

b

a

Å

Å

Å

Å

Å

Å


                 Polarity A P1                       Polarity A P2
Figure 6.7.1:  Oracle being a composition of two Affine Toffoli gates with different affine polaritie .
[image: image132.emf]
         Standard polarity   Affine polarity     Toffoli gate
Figure 6.7.2:  Realization of  quantum arrays with affine gates realized according to  Algorithm 6.4.1.
The idea  of combining standard and affine polarities leads therefore to two new concepts 
a) Affine Toffoli gates, ARNG gates and other affine gates that can be used individually in synthesis (like in generalization of ESOP)

b) The generalization of the concept of PPRM. A PPRM with a standard polarity preprocessor and postprocessor is an FPRM. Thus our new concept of  new AND/EXOR family generalizes the FPRMs.
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Figure 6.7.3: (a) Preprocessor and postprocessor for Standard polarities, (b) Pairs of the Preprocessor and postprocessor for arbitrary circuits, (c) example of simple linear affine preprocessor for a PPRM  bc
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ac, (d) example of an FPRM generalization created by adding linear pre- and post- processors. 
Figure 6.7.3 shows Standard polarity gates and affine polarity gates together with their mirror to create an oracle for kernel PPRM function  
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6.8. Program CircuitSearch

6.8.1. Introduction to CircuitSearch

CircuitSearch realizes a new approach to design quantum circuits using different search strategies. Here are some of its properties:

1. Visualization. The user can visualize the circuits. This helps the user in investigating new search algorithms and the solution space. This research is the first application of the visualization of circuits in the classical reversible and quantum forms (QMaps). 
2. Exhaustive Search. A CircuitSearch algorithm finds solutions using the state-space search mechanisms.  Human-designed expert systems often work well, but are limited in application. Traditional pure search strategies are comprehensive, but memory and time intensive. The heuristic search methods of Genetic Algorithms/Genetic Programs have limitations of size, computation time, and solution optimality and further, give no explanation of design methodology or transferable rules for generalization. Human expertise must therefore combine with search mechanisms, for the development of efficient problem-solving methods.  Thus the human can control and modify the CircuitSearch program.

3. Affine CircuitSearch represents a rich example for a problem that has a very large search space. we created a system that can enumerate logical circuits with specific characteristics and optionally matching function signatures (QMaps). It can use two different search techniques – exhaustive and iterative deepening – which are both blind (no heuristics are used). Using exhaustive or iterative deepening consumes a lot of resources. It takes longer CPU time and sometimes more memory (according to the implementation details). The user can interact and reduce the search.

In order to design a circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. The initial search idea of our research is very naïve, we want to visualize the quantum circuit constructed from very basic quantum gates which comprise V, V† and NOT gates. The purpose of CircuitSearch is to enumerate circuits using a variety of methods for the user that can control the search by additional parameters as a result of his visual inspection. To abstract this idea of searching, the CircuitGenerator interface is introduced. Different search methods can implement this interface, and the rest of the program, more or less, doesn’t care how actually the search is working.

CircuitSearch is a C# .NET application, developed with Visual Studio 2005, and designed for enumerating logical circuits with specific characteristics and optionally matching function signatures (KMaps). It uses two different search techniques – exhaustive and iterative deepening – which are both blind (no heuristics are used).

6.4.1. Tofolli Gate Search Matching:

In Exhaustive Search: It needs 5 segments, total circuits searched is 43,563,744, 404,278 Circuits searched and total time required 60 seconds. Total binary Circuits found for that 1,758,456 circuits and total matched Circuits 4,584.
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Figure 6.4.1.1: Examples of Circuit simulator interface.
Iterative Search: Same for 5 segments, total circuit searched unknown. Search rate 1,080 Circuits/s and total time needed is 3 minutes 52 seconds, almost 4 times more time than exhaustive search. Total binary circuits found is 801,444 means search space is much less than exhaustive search and matching circuit found is 2,952 which is 50% of the circuits found in Exhaustive search. Here for iterative deepening, we used fast reduce option.
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Figure 6.4.1.2: More circuits found automatically by CircuitSearch.
Table 6.4.1.1: Complexity evaluation for some results of CircuitSearch (to be finished in the final text).
	Test 1
	No. of Inputs
	No. of Segments
	Total Circuits tested
	Total Circuits found
	Search time in s
	Search rate

Circuits/s

	1
	1
	1
	12
	6
	0.203
	59.1133

	2
	1
	2
	78
	30
	0.015
	5200

	3
	1
	3
	364
	115
	
	

	4
	1
	4
	1365
	387
	0.016
	85312.5

	5
	1
	5
	4368
	1148
	0.062
	70451.6

	6
	2
	1
	24
	10
	
	

	7
	2
	2
	300
	76
	
	

	8
	2
	3
	2600
	461
	0.031
	83871

	9
	2
	4
	17550
	2461
	0.25
	70200

	10
	2
	5
	98280
	11782
	0.985
	99776.6

	11
	2
	6
	475020
	51512
	4.844
	98063.6

	12
	2
	7
	2035800
	207184
	21.984
	92603.7

	13
	2
	8
	7888725
	772235
	95.594
	82523.2

	14
	3
	1
	48
	18
	0.031
	1548.39

	15
	3
	2
	1176
	216
	0.016
	73500

	16
	3
	3
	19600
	2097
	0.188
	104255

	17
	3
	4
	249900
	18025
	1.953
	127957


Table 6.4.1.2: Complexity evaluation for CircuitSearch Program (to be completed in the final thesis).
	Test 1
	No. of Inputs
	No. of Segments
	Total Circuits tested
	Total binary Circuits found
	Matched Circuits
	Search rate

Circuits/s

	1
	3
	2
	588
	28
	P-1
	294

	2
	3
	3
	24,696
	1,288
	P-28
	12,348

	3
	3
	4 (Peres)
	1,037,232
	48,566
	P-612
	518,616

	4
	3
	5 
(Toffoli)
	43,563,744
	1,758,456
	T-4,584

P-24,000

0.58
	85312.5

	5
	3
	6
	1,829,677,248
	63,590,100
	T-305,256

P-856,993

44.10
	74,153

	6
	3
	7
	
	
	
	

	7
	3
	8
	
	
	
	

	8
	2
	2
	108
	12
	CN-1
	54

	9
	2
	3
	1,944
	216
	CN-12
	972

	10
	2
	4
	34,992
	3,486
	CN-220
	17,496

	11
	2
	5
	629,856
	56,040
	CN-3,736
	314,928

	12
	2
	6
	11,337,408
	910,356
	
	246,414

	13
	2
	7
	204,073,344
	14,958,456
	6.26
	234,477

	14
	2
	8
	3,673,320,192
	248,304,624
	2.04.50
	202,502

	15
	2
	9
	
	
	
	

	16
	3
	10
	
	
	
	

	17
	3
	4
	
	
	
	

	18
	4
	1
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Figure 6.4.1.3 :Complexity analysis of CircuitSearch (More detailed graph will be created).
Minimum cost: Approximation: all V, V†, NOT gates cost same = 1.Gates (V, V†, NOT)With single EXOR cost = 2, EXOR of 2 (Like a EXOR b with any gates V, V†, NOT)  cost = 3 and so on.

Length (segments) of the shortest circuits for a given functions versus How many functions have the shortest circuits of these length, also time, memory comparison. So, at a certain number of segments search will find the all possible functions for inputs. That length (number of segments) will be the optimal depth.

Table 6.4.1.3: Example Table of analysis: (to be completed after analysis of results)
	Test No.
	Length(segments) of the shortest/optimal circuit for given functions
	How many functions have the shortest circuits of this length(segments)

	1.
	1
	

	2.
	2
	

	3.
	3
	

	4.
	4
	

	.
	5
	

	.
	6
	

	.
	7
	

	.
	8
	

	
	
	

	
	
	


When we analyzed the results of the CircuitSearch program we found the following:

1. When the circuits become larger, the higher proportions of them are not permutative, thus the method wastes a lot of time to find nothing useful.

2. There are very many circuits for the same function. When the numbers of variables grows, the same functionality is obtained in extremely many circuits. Again this means that there is no need to use this software for large functions.

3. Analyzing our designs found by the software we found however interesting properties  and patterns that are independent on the numbers of variables (see for instance the interval functions).

4. We found that the very interesting property. 
Property 6.1.
1. Given is a quantum array built with only CV, CV+ , NOT and CNOT gates
2. We replace all CV and CV+ gates with CV and CV+ gates in all possible ways

3. We remove or add any number of NOT and CNOT gates in arbitrary way to the structure

Then the function remains permutative. 

Any other transformation (replacement, addition or removal) leads to a non-permutative circuit. 
Based on the above Property 6.1, the CircuitSearch program proved a very useful prototyping tool as it allowed to find a general property which was not known earlier. This property allowed me to create a library of inexpensive gates to be used in hierarchical synthesis methods.
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Fig. 6.2.13: Derivation of various non-optimal circuits for the minimum gate from Fig. 6.2.11.








Figure 6.2.12: Graphical Analysis of the affine Toffoli gate from Figure 6.2.11. 








Figure 6.2.11: Binary Affine Toffoli Gate for function from Figure 6.2.12.








Figure 6.2.10: Realization of  S2,3 (a, b, c, d )� EMBED Equation.3  ��� e  using ARNGs. Observe the same general pattern of connections as in Figs. 6.2.1 and 6.2.7.





Fig. 6.2.8.  Realization of 3-controlled U 








Fig. 6.2.9. Realization of 3-controlled operator U from Fig. 6.2.8 with CV, CV+ and Controlled� EMBED Equation.3  ���,� EMBED Equation.3  ��� gates. Pay attention to the mirror circuit top right.








Fig. 6.2.7:  With d=0 we realized here a symmetric function of variables a, b, c. Observe that + can be replaced with � EMBED Equation.3  ��� in the formula for S23 (a, b, c). maj (a,b,c) = S23 (a, b, c) =  S2 (a, b, c) + S3 (a, b, c) is a  totally symmetric function of a, b, c.





Fig. 6.2.6: Realization of function � EMBED Equation.3  ���   


using affine-controlled target gates V, V† and NOT.








Figure 6.2.5: Realization of function a(b ( c) ( d using linear controls of V/V† gates.





Figure 6.2.1: The cost of a 3*3 Toffoli gate is five 2-qubit gates. On the right we see the symbol of Toffoli gate as a double-controlled NOT.  Hence the another name of Toffoli gate  as CCNOT gate





Figure 6.2.2: Realization of “double-cube”function   � EMBED Equation.3  ���






































































































































































































































PAGE  
1

_1256044010.vsd
0


0


0


0


0


1


1


0


1


1


0


ab


cd


00


01


11


10


00


01


11


10



_1267688181.unknown

_1286999110.vsd
V


a


b


c


0


(c)


V


S2,3(a,b,c)


V


V+



_1287002992.vsd
(f)


S1,3


ab


c


0


1


00


01


11


10


S2,3


=


0


1


1


1


0


1


1


1


ab


c


S1,2 = S1,3      S2,3



_1287003436.vsd
V


a


b


c


0


(i)


S1,2(a,b,c)


V


V


V



_1287003867.vsd
(h)


V


V


V+


V


=


V


V


=


V



_1342707680.vsd
Figure 
6.6.1.8a


Figure
6.6.1.13b


a


b


c


d


0



_1287003240.vsd
a


b


c


0


(g)


S1,2(a,b,c)


V


V


V


V+



_1287000629.vsd
0


a


b


c


0


(e)


S1(a,b,c)


S1,3



_1286998184.vsd
S3(a,b,c)


a


b


0


c


0


(a)



_1286998519.vsd
a


b


c


(b)


S1,3(a,b,c)



_1267960375.vsd
c



_1259004351.unknown

_1262468075.vsd
ab


01


11


10


00


0


0


0


1


1


0


0


0


1


0


c


ab


01


11


10


00


0


0


0


1


1


0


1


1


1


0


c


ab


01


11


10


00


1


0


0


0


0


1


1


1


1


0


c


=



_1262471570.vsd
1


ab


cd


1


1


1


1


ab


cd


1


=


1


ab


cd


1


1


1



_1262472277.vsd
ab


cd


00


01


11


10


00


01


11


10


1


1


1


1


0



_1262472511.vsd
1


1


1


1


ab


cd


00


01


11


10


00


01


11


10


0


0



_1267688146.unknown

_1262474418.unknown

_1262472347.vsd
ab


cd


00


01


11


10


00


01


11


10


1


0


1


0


0



_1262471939.vsd
1


ab


cd


1


1


1


1


ab


cd


1


=


ab


cd


1


1


0


0



_1262470230.vsd
No interest


f = S2,3 (a, b, c)



_1262470830.vsd
No interest



_1262469609.vsd
0


ab


c


00


01


11


10


0


1


1


1


1


0


0


0


1


f


c


ab


00


01


11


10


1


1


1


1


0


0


0


0


0


1


 S2,3 (a, b, c)


c


ab


00


01


11


10


1


1


1


1


0


0


0


0


0


1



_1259009908.vsd
ab


cd


00


01


11


10


00


01


11


10


ab


cd


00


01


11


10


00


01


11


10


=



_1262441066.unknown

_1262467631.vsd

_1259010239.unknown

_1259014033.unknown

_1259009446.unknown

_1259009759.vsd
ab


cd


00


01


11


10


00


01


11


10


1


1


1


0


0


1


0


1


0


0


0


0


1


0


0


0



_1259008661.vsd
ab


cd


00


01


11


10


00


01


11


10


1


1


1


1


1


0


1


0


1


1


1


0


1


0


0


0


ab


cd


00


01


11


10


00


01


11


10


0


0


0


1


1


1


1


1


1


1


1


0


0


0


0


0


=


ab


cd


00


01


11


10


00


01


11


10


1


1


1


0


0


1


0


1


0


0


0


0


1


0


0


0



_1258909171.vsd
….


….



_1258911021.vsd
ab


01


11


10


00


1


0


0


0


1


1


0


1


0


0


c



_1259003518.vsd
.



_1258910891.unknown

_1257868560.unknown

_1257885416.unknown

_1257889724.unknown

_1257889849.unknown

_1257885588.unknown

_1257868629.unknown

_1257866331.unknown

_1255966963.unknown

_1255997253.vsd
0


01


11


10


00


0


0


1


0


1


1


1


c


ab


1


0


01


11


10


00


0


=


1


0


1


1


1


c


ab



_1255999414.unknown

_1256000452.unknown

_1256007993.vsd
x  Exhaustive Search


*   Iterative Search


Computational Time


Computational Space



_1256043398.unknown

_1256000470.unknown

_1256000162.unknown

_1255997562.vsd
V+


0


01


11


10


00


0


0


V+


0


V+


1


V+


c


ab


0



_1255998211.vsd
V+


0


01


11


10


00


0


0


V+


0


V+


1


V+


c


ab


.


0


01


11


10


00


V.V


0


V.V+


V.V.VV+


V.V+


V.V


0


V.V+


1


V.V


c


ab


=


ab


01


11


10


00


V.V


0


V.V


V.V.V


V


V.V


0


V


1


V


c



_1255997363.unknown

_1255996156.vsd
0


01


11


10


00


V


0


V


0


0


1


0


c


ab


V


V



_1255996454.vsd
V


01


11


10


00


0


0


0


0


0


1


V


c


ab


V


V



_1255996529.vsd
ab


01


11


10


00


V.V


0


V.V


V.V.V


V


V.V


0


V


1


V


c



_1255996276.vsd
V


01


11


10


00


V


0


0


0


V


1


0


c


ab


V


0



_1255992493.unknown

_1255993658.unknown

_1255983822.vsd
V+


V+


ab


V+


ab


NOT


01


11


10


00


V.V


0


V.V


V.V.V


V


V.V


0


V


1


V


c


ab


NOT


01


11


10


00


I


0


I


I


NOT


I


V+


1


c


01


11


10


00


NOT


0


I


I


I


1


I


c



_1254043198.vsd
ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


ab


01


11


10


00


1


0


0


0


1


0


0


0


1


0


c


=



_1254051676.vsd
ab


cd


00


01


11


10


00


01


11


10


1


1


1


1


1


0


1


0


1


1


1


0


1


0


0


0


ab


cd


00


01


11


10


00


01


11


10


0


0


0


1


1


1


1


1


1


1


1


0


0


0


0


0


=


ab


cd


00


01


11


10


00


01


11


10


1


1


1


0


0


1


0


1


0


0


0


0


1


0


0


0



_1254053639.vsd
1


ab


cd


00


01


11


10


00


01


11


10


1


1


1


0


0


1


0


1


0


0


0


0


1


0


0


0


ab


cd


00


01


11


10


00


01


11


10


1


1


ab


cd


00


01


11


10


00


01


11


10


1


1


1


=



_1255961014.unknown

_1255962302.unknown

_1255955432.unknown

_1255960772.unknown

_1254070074.unknown

_1254052746.vsd
0


ab


cd


00


01


11


10


00


01


11


10


1


1


1


1


1


0


1


0


1


1


1


0


1


0


0


0


ab


cd


00


01


11


10


00


01


11


10


1


0


1


1


0


1


0


0


1


0


1


0


1


0


0


1


ab


cd


00


01


11


10


00


01


11


10


0


1


0


0


1


1


1


0


1


0


0


0


0


0


1


=



_1254053065.vsd
0


ab


cd


00


01


11


10


00


01


11


10


1


1


1


1


1


0


1


0


1


1


1


0


1


0


0


0


ab


cd


00


01


11


10


00


01


11


10


0


1


1


1


1


0


0


0


0


1


1


1


0


0


0


1


ab


cd


00


01


11


10


00


01


11


10


1


0


0


0


0


1


1


0


0


1


1


0


0


1


=


0


0



_1254052207.vsd
1


ab


cd


00


01


11


10


00


01


11


10


1


1


1


0


0


1


0


1


0


0


0


0


1


0


0


0


ab


cd


00


01


11


10


00


01


11


10


1


1


1


1


1


1


1


0


0


0


0


0


0


0


1


0


ab


cd


00


01


11


10


00


01


11


10


0


0


0


1


1


1


0


0


0


0


0


1


0


1


0


=



_1254045160.vsd
ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


ab


01


11


10


00


1


0


0


1


0


1


1


0


1


0


c


ab


01


11


10


00


0


0


0


1


0


0


1


0


1


0


c


=



_1254045471.vsd
F(a,b,c)


01


11


10


00


0


0


1


0


1


0


0


0


1


0


c



_1254044693.vsd
ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


ab


01


11


10


00


1


0


1


1


1


1


0


1


1


0


c


=



_1250634434.unknown

_1254041411.vsd
c


ab


ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


=



_1254042839.vsd
ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


ab


01


11


10


00


1


0


0


0


1


1


0


1


1


0


c


=



_1250635145.unknown

_1225312944.unknown

_1225125700.unknown

_1225301612.unknown

_1225312865.unknown

_1225301574.unknown

_1186940121.unknown

